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On Infantile Amnesia and Network Structure

Understanding infantile amnesia is  crucial  to unraveling the intricate mechanisms that underpin
memory  formation.  The  enigmatic  phenomenon  of  infantile  amnesia,  where  early  childhood
memories fade into obscurity, poses a puzzle within the realm of cognitive development. Exploring
this phenomenon not only sheds light on memory retention but also holds the key to comprehending
the intricate workings of the human brain.

In this letter, we endeavor to draw an intriguing analogy between synaptic density—specifically in
the hippocampus, a pivotal brain region for memory—and the stability of neural networks. Synaptic
density, much like the stability of computational models, undergoes dynamic changes during early
development. This analogy offers a unique lens through which to explore the developmental stages
of memory formation and retention.

Analogous to the synaptic proliferation and subsequent pruning observed in the hippocampus, the
stability of the connectivity matrix in computational models mirrors a similar trajectory. During
early stages, the brain, akin to a network with exuberant synaptogenesis, showcases a homogenous
and unstable connectivity matrix. This stage corresponds to a highly connected initial state (similar
to a Hopfield network)—chaotic, oscillatory, and lacking persistent memory formation. However, as
the brain matures, a phase of synaptic pruning ensues, leading to a more heterogeneous and stable
connectivity matrix, enabling the formation of persistent memories. The decline in neurogenesis in
the hippocampus was hypothesised to be the cause of infantile amnesia [Josselyn2012]. Reduction
in the dimension of the connectivity matrix may have an effect on stability, but not as much as
synaptic pruning.

Sufficiently  large  and  heterogeneous  network  structure  guarantees  stability  independent  of  its
microscopic parameters and external perturbation [Meena2023]. Spectral analysis of the adjacency
and Laplacian matrices may reveal significant insight. Stable matrices tend to have heterogenous
eigenvalue distribution.  This is evident in power (von Mises) iteration.  As the iteration number
increases it converges to the greatest eigenvalue, which corresponds to stability. On the other hand,
if the two greatest eigenvalues are equal or close, then iteration will oscillate and never converge. 

For random matrices, whose entries are independent and identically distributed with zero mean,
circular law states that the eigenvalue distribution converges to uniform distribution over the unit
disc as the dimension goes to infinity. Complete randomness diminishes structural heterogeneity. 

Von Neuman and Gibbs Entropies of graphs can be used to analyze the structural and external
excitation  requirements  to  have  a  stable  network.  Von Neuman Entropy captures  the  structural
characteristics, whereas Gibbs Entropy measures the uncertainty related to the latent states of a
graph. The uncertainty should not be high (corresponding to uniform eigenvalues and instability) or
zero (corresponding to full or no connectivity). There should be a heterogenous structure in order to
have a stable operation. 

Consider block diagonal matrices. Typically they have heterogenous eigenvalues, which will lead to
stability.  Here,  we  can  draw  an  analogy  with  the  compartmentalization  of  the  brain.  A
compartmentalized brain will guarantee stable functioning. Pruning excessive connections formed
during infancy is a prerequisite for stability and hence permanent memories. Unpruned excessive
functions not only prevent persistent memory formation, will also disturb the regional interaction
stability,  which  may  cause  or  exacerbate  psychiatric  disorders.  Therefore,  spectral  analysis  of
connectivity may constitute a measure for them.

Let's model the brain connectivity as a Restricted Boltzmann machine. Above a certain connectivity
rate, the spiking network will fire forever, even if the input excitation is canceled. To have stability
and memory, the number of recurrent connections should be decreased. Otherwise, the spiking will
oscillate and never converge to a stable state (i.e. no memory).



In essence, artificial neural networks are function approximators. Any function can be approximated
with an adequate number of parameters. For instance, shallow networks with high dimensions can
successfully represent words and consequently enable the success of current large language models.
However,  fully  connected  layers  become  practically  untrainable  for  high  dimensions.  Unlike
shallow networks, more layers with limited dimensions are utilized in deep structures. Furthermore,
special  structures  (Convolutional  Neural  Network,  Recurrent  Neural  Network,  and Transformer
architectures) are imposed to achieve stable structures that can be trained more easily. We think the
incorporation  of  these  specific  structures  makes  the  network  more  heterogeneous,  prevents
oscillations, enables memorization, and hence makes it trainable more easily. In this case, pruning is
not performed during training  but provided within the network structure implicity at the beginning.
After training, deep artificial networks tend to have unnecessary redundancy that can be removed
by reducing  weight  precision  or  pruning  without  noticeable  performance  degradation.  Pruning
during train as in human brain may be more efficient. There should be a  mechanism in the brain
that performs synaptic pruning modulated by the inputs.

Proposing the analysis  of stability of connectivity matrices  as a future research direction holds
promise  in  elucidating  the  nuances  of  memory  formation.  Exploring  how  the  transition  from
homogeneous  to  heterogeneous  connectivity  impacts  memory  retention  within  computational
models might yield profound insights mirroring the developmental stages observed in the brain.

The  proposed  analogy  between  synaptic  density  dynamics  and  connectivity  matrix  stability
provides  a  compelling  framework  to  delve  deeper  into  the  mechanisms  underlying  memory
formation. While infantile amnesia remains a captivating enigma, this conceptual linkage beckons
further exploration, offering a potential avenue for unveiling the mysteries of memory retention and
cognitive development.
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